
Click here
to add clip

art

Multi-Language Multi-Language
Character SetsCharacter Sets

What They Are, How to What They Are, How to
Use ThemUse Them

Bob Balaban, President
Looseleaf Software, Inc.
http://www.looseleaf.net

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

AgendaAgenda

Speaker introduction
Background: terminology
History of electronic character sets
The need for multi-language character
sets
LMBCS - Lotus MultiByte Character Set

How it works
Why no one else uses it

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Agenda - 2Agenda - 2

Unicode
How it works
Why everyone uses it

Software for multi-language character
sets

LMBCS
Unicode
Java, C, LotusScript

Web applications and MLCS

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Speaker IntroductionSpeaker Introduction

Master's degree in Chinese History/
Anthropology
Professional software developer since
1978
Engineer at Lotus Development Corp.
1987-97
Reviewer of original LMBCS
specification (1988)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Speaker - 2Speaker - 2
Team leader for adding LMBCS/Kanji
support to 123/G (os/2)
Developer on Notes/Domino 1993-97

Author of LotusScript "back-end classes"
Author of Java APIs for back-end
classes

Founded Looseleaf Software, Inc., 1997
Custom development, training,
architecture/design, consulting
Notes/Domino, J2EE, Groove

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

TerminologyTerminology
Textual characters on a computer are
really numbers

Like everything else
The numbers, when representing text,
are mapped to symbols on a screen

or on paper
The number of symbols you can display
depends on the number of bits
assigned to the "character set", or
"code space"

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Terminology - 2Terminology - 2

One "character" is a "code point"
Just a number

The screen symbol is the "glyph"
The "font" is the style in which the
glyphs are displayed

serif, sans serif, etc.
The mapping of numbers to code points
defines a "character set", or "code
page"

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Terminology - 3Terminology - 3

What is a "native character set"?
The default character set used by the
operating system
Many OS's can handle multiple
character sets (Ascii, CP850, etc.)
Many OS versions depend on a "locale"
specification

E.g., CP932 in Japan, CP850 in
NAmerica

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Terminology - 4Terminology - 4

All mappings are essentially arbitrary
But some have been agreed upon as standards

A = 1
B = 2
...
Z = 26

Another possible mapping

A = 17
B = 18
....
K = 99
....
Z = 102

A possible mapping

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Terminology - 5Terminology - 5

What are "control codes"?
Generally, non-printing

No visible representation, no glyph
Invented to manage early printer/
terminal devices, and communication
protocols

Ack/Nak
Carriage return, newline, tab, formfeed
Bell

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Background: History of electronic Background: History of electronic
character setscharacter sets
Original character set was Binary
Coded Decimal (BCD)

IBM
64 characters, 6 bits
Known later as "SIXBIT ASCII"

Developed for IBM punch cards
Upper case letters, digits, punctuation

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Background - 2Background - 2

When IBM created the System 360, they
extended BCD

1965
EBCDIC
Extended Binary Coded Decimal Interchange
Code
256 code points
64 control codes
Upper and lower case!
Some slots were empty, customers complained
about wasted memory!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

IBM EBCDIC, ca. 1965IBM EBCDIC, ca. 1965

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

EBCDIC and BeyondEBCDIC and Beyond

The most popular character set through
the 1970s

Until the PC was born
IBM used 8 bits because the word size
on S360 was 32 bits
IBM machines (other than PCs) still use
EBCDIC

There are a few variants, some code
points may be different

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Beyond - 2Beyond - 2

Note the strange ordering, where the
alphabetic sequences are interrupted
Makes for lots of fun when writing string
comaprison/sorting code!

Or converting between upper and lower
case

Note, no accented characters
Or non-Latin glyphs

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

The Rise of ASCIIThe Rise of ASCII

American Standard Code for
Information Interchange

Or something like that
Network bandwidth was very
expensive, people wanted to save
money and utilize 7-bit channels
And wanted to conserve on memory,
eliminate all that "wasted" space in
EBCDIC

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

ASCII - 2ASCII - 2

Adopted by PC OSs (DOS), and by Unix
systems
32 control codes, punctuation, digits, upper and
lower alphabetics (0 is special)

This time letters were in a rational sequence (caps
first)!
You could add/subtract 32 to go from upper to
lower and back

Still no accents or "foreign" glyphs

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

ASCIIASCII

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

The need for multi-language The need for multi-language
character setscharacter sets

Eventually, manufacturers realized that
they could maybe sell more software
and hardware outside NAmerica if they
supported languages other than English
But how to deal with those "foreign"
symbols?

While still allowing for interoperability
with Latin text?

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Multi-language - 2Multi-language - 2

Easy! Go back to 8-bit "codepages"!
Use the "upper half" of the 8-bit space (another
128 characters beyond ASCII)

Each computer sold in a "foreign" country would
carry a different code point mapping (a
"Codepage")
Again, this system was invented by IBM

And done very systematically
Each codepage got a numeric designation
And a glyph mapping chart in a book

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Codepages - continuedCodepages - continued
ASCII was always the "lower half" of the
codepage

So everyone in the world could benefit from using
English

Windows ASCII (again, 8 bits) is cp437
IBM "international English" is cp850
Japanese is cp932 (more on this later)
PRC Simplified Chinese: cp936
Korean: 949
Cyrillic: cp1251
Latin1: cp1252
etc.

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Codepage 850Codepage 850

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

But.... Japanese?But.... Japanese?

What if you can't fit a culture's "character set"
into 256 slots?
Asian languages, for example:

Thai: 40+ alphabetic/phonetic symbols
Chinese: 5000 common ideographs, 60,000+
total, TWO different systems!
Japanese: same (almost) ideographs as Chinese
(trad.), PLUS 1 alphabetic series (Katakana),
PLUS 1 phonetic (Hiragana), PLUS double-wide
latin letters (so they line up with Kanji)!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Japanese - 2Japanese - 2

But a codepage only has an 8-bit
namespace!!?
So, reserve a sequence (or 2, or 3) in
the upper half of the table as "pointers"
to another 8-bit space
As in CP932 (Japanese)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Codepage 932Codepage 932
Extract for Lead Byte E9-EA

http://images.google.com/imgres?imgurl=http://i.msdn.microsoft.com/Cc194909.g0021(en-us,MSDN.10).gif&imgrefurl=http://msdn.microsoft.com/en-us/library/cc194909.aspx&usg=__-oyKgl5PBkQkR_u9jDqJ66gYk-A=&h=934&w=640&sz=71&hl=en&start=6&um=1&tbnid=piCoJb5eGeyotM:&tbnh=147&tbnw=101&prev=/images?q=codepage+932&hl=en&sa=N&um=1

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

CP 932, continuedCP 932, continued

This gives us an effective 16-bit space
Almost, sort of
It's really a partially-chained space

But requires that we allow for 2-byte
(and later, even 3-byte) sequences to
describe one "character"
You'd better know which CodePage
you're dealing with for every string

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

CP 932, continuedCP 932, continued

BUT: still no way to combine multi-CP
values in one string
Unless you start inventing special
"opcodes" to switch codepages in the
middle of a byte stream
No one thought that was a good idea

So that particular problem was ignored
for a while

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LMBCS - Lotus MultiByte LMBCS - Lotus MultiByte
Character SetCharacter Set

Lotus invented a new scheme as part of
the work done for 123 Release 3

The first Lotus spreadsheet coded in C
Ran on both DOS and OS/2 (NOT
Presentation Manager, which didn't exist
yet)
Shipped in March, 1989

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LMBCS, continuedLMBCS, continued

Essentially also a "lead-byte" system, taking
advantage of the fact that the ASCII codepoints
01 through 1F are non-printing characters

00 is still special, particluarly for C strings
So, let's assign every glyph to a "code group",
every code group has a unique identifier, a
value between 1 and 1F
Each code group corresponds (approximately)
to a CodePage

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LMBCS, continuedLMBCS, continued

Code group 1 is Latin1
Very close to IBM CP850

Each code group is either single byte, or multi
byte
Each code group's "lower half" is ASCII
Code group 16 (Japanese) is multi byte, with
designated "lead bytes", very similar to CP932
And so on...

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LMBCS, continuedLMBCS, continued

The big LMBCS innovation:
Every character in "canonical" LMBCS is
preceded by its code group identifier

"ABC" in hex format:
01-41-01-42-01-43-0

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LMBCS, continuedLMBCS, continued

Characters in multi-byte code groups
could therefore be 2, 3, or 4 bytes long
0 still used (in C) as a string terminator
Guaranteed to be no embedded 0s in a
string

Example of 2-byte Japanese character:
10-<lead byte>-<2nd byte>-0

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LMBCS, continuedLMBCS, continued
But this is obviously flawed!
All strings double in size!
So we apply an "optimization"
Each application file comes with a "default code
group" designation
Any character where the code group value is
omitted is assumed to be in the default code
group
We detect code group identifiers because they
are non-printing characters in a specified range
Any character in a non-default code group must
have its code group value specified

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LMBCS, continuedLMBCS, continued

This is known as "compressed", or "optimized"
LMBCS

"ABC" in default code group 01:
41-42-43-0

"ABC" in default code group 16:
01-41-01-42-01-43-0

Hiragana small o in code group 16:
82-A7-0

Hiragana small o in code group 1:
10-82-A7-0

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Special TopicsSpecial Topics

What about diacriticals?
What about BIDI (bi-directional) character sets?
What about "ligatures"?
How to handle the huge Chinese/Japanese/
Korean character namespaces?
These are issues that all multi-language
systems must handle properly
(There are even more issues, but these are the
common ones)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

DiacriticalsDiacriticals

We have a choice for dealing with
accent marks

Create a code point and glyph for every
combination

a á à
e é è

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Diacriticals - 2Diacriticals - 2

Or,
Invent the "non-spacing character"

The "base" character has its own code
point, each accent has its own
Everyone knows not to move the cursor
for the non-spacing character

a + ` = à
e + ' = é

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Diacriticals - 3Diacriticals - 3

You might want it either way
Using non-spacing characters might
make sorting easier (accent insensitive
sorting)
Or, might want each code point to be
separate (accent sensitive sorting)
LMBCS does not use non-spacing
characters

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

"BIDI""BIDI"

Some character sets are written right-
to-left

Hebrew
Arabic

But numbers are still left-to-right
Some character sets are traditionally
top-to-bottom, right-to-left

Japanese
Chinese

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

BIDI - 2BIDI - 2
Mostly it's an issue for the rendering
software

And for the input software
But, how are the code points
represented in memory?

Which order?
The convention is that strings are
represented in memory in "logical"
order

I.E., in the order that you input them

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

BIDI - 3BIDI - 3
So, if you have a RTL sequence of 3
characters

Let's represent as: "ZYX"
Followed by 3 digits ("123")
You would see those code points in
memory as:

XYZ123
The rendering software has to know to
reverse the letters, not the digits

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

LigaturesLigatures
Historically, physical typefaces have combined
certain individual letter combinations in to a
single glyph

ff, ffl, fl, fi, ffi
Because the tip of the 'f' overhangs the next
character

Most computer fonts ignore this
Some don't, they want to render as historically
accurate

You need to know the character following the 'f'
before you can render

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Ligatures - 2Ligatures - 2

High-end publishing systems want to do
this
So room was made in some code
pages for special glyphs representing
the ligatures
Makes sorting very complicated!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Chinese, Japanese, KoreanChinese, Japanese, Korean

Present a special problem, because to fully represent the
writing system would consume over 150,000 code points
Even fully 16-bit systems only give you 65,000 code
points
Compromise: Consolidate

A large percentage of the Traditional Chinese, Japanese
Kanji and Traditional Korean character sets are held in
common
So we can represent the set of common glyphs only once

Referred to as CJK Consolidation

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Limitations of LMBCSLimitations of LMBCS

It's a very robust technique for
representing multi-lingual text

Including within a single string!
In a reasonably compressed format (no
embedded 0s)

But...
The rest of the world adopted Unicode

LMBCS remains a "proprietary" Lotus
technology

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Where is LMBCS?Where is LMBCS?

LMBCS is used uniformly throughout
Lotus products

SmartSuite
Notes
Domino

And nowhere else
Major investment in supporting software
tools
More on this later

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

What Does Everyone Use Now?What Does Everyone Use Now?

Unicode
Lotus also supports Unicode, as we'll see

Unicode is an open standard
See http://www.unicode.org

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

What is Unicode?What is Unicode?

Earlier character encoding schemes
are often referred to as SBCS or DBCS
or MBCS

Single Byte Character Set (e.g., Ascii)
Double Byte Character Set (e.g., CP932)
Multi-Byte Character Set

Unicode is none of these

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

What is Unicode?What is Unicode?

Unicode is not byte oriented, so calling it even
MBCS is misleading

Though most of the time this is a true statement
There are times when you can treat it as an SBCS
too

My working definition:
A character encoding scheme that assigns a
unique numeric value to every character
All written characters for all human languages (and
many special characters as well) are
accommodated

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

What is Unicode?What is Unicode?

Note: this definition says nothing about
how big the values might be

Or how many "bytes" might be needed to
represent any given character
Because that's not the important issue

The key point is that the "name space"
for characters in Unicode is flat

0 is still a special value
Upper value is essentially unbounded
And therefore very extensible

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

What is Unicode?What is Unicode?

The current standard defines an upper
limit of 0x10FFFF (using 3 8-bit bytes)

More than one million code points
Of which about 5% is allocated
13% is reserved for private use
2% reserved
5% planning underway
Plenty of room for growth

Of course, the devil is in the details

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Unicode MappingsUnicode Mappings

The very large Unicode character
space is laid out in regions
Designed for interoperability with Ascii
and ISO Latin-1

For ease of translation
Ascii values (up to 0xff) are maintained
unchanged
Standards committee determines the
rest of the values

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Unicode EncodingsUnicode Encodings

Question on computer representations:
0x10ffff is 3 bytes, 24 bits
Most computers do not align on 3-byte
boundaries
So we would "round up" to 4 bytes, 32
bits

So, do we need to allocate 32 bits per
character in all our strings?

And, if we do, won't there be embedded
0s?

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Encodings - 2Encodings - 2

Yes, there would
But we don't necessarily need all 32
bits for each character.
There are alternate Unicode
"encodings":

UTF-8: each char is 1, 2, 3, or 4 units
UTF-16: each char is 1 or 2 units
UTF-32: each char is 1 unit

UTF-16 is the "default" encoding

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Encodings - 3Encodings - 3

A char's real value does not change
with the encoding

Only the number of bytes used to
represent that value

"A" in UTF-8: 0x41 (byte)
 in UTF-16: 0x0041 (short)
 in UTF-32: 0x00000041 (DWORD)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Encodings - 4Encodings - 4

Implication:
In UTF-8 and (to a lesser extent) in UTF-16
You may STILL need multiple units to represent a
given code point
Therefore, Unicode can still be "multi-byte", in a
sense
Meaning, "multiple positions"

Zero still used by convention to terminate strings
Though this can vary by programming language
And the number of bytes must conform to the
encoding (UTF-8, 16, 32)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

A Point on DiacriticalsA Point on Diacriticals

Unicode also gives you a choice on
representation

One glyph for a "pre-composed"
character

U-umlaut is 0x00fc
Base char + non-spacing char
("composed")

U + umlaut is 0x0075 + 0x0308
So even in UTF-32 you may need 2
positions

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Referencing Characters in Referencing Characters in
UnicodeUnicode

All characters have a unique name
Based on ISO 10646
E.g., "Bengali Digit 5"

The convention for representing a
character's code point value in Unicode

U+xxxx
Always assumes Hex representation

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Software for multi-language Software for multi-language
character setscharacter sets

The "standard" C library string functions are no
longer usable

They all assume 1 byte == 1 char
strlen() tells you the length of a string in bytes, but
not how many chars are in it
strcmp() is only valid for some SBCS, would never
work with (e.g.) EBCDIC
Cannot add 0x20 to go from uc to lc

You must use a software library that supports
the character set in use

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Software for multi-language Software for multi-language
character sets - 2character sets - 2

What kinds of things do you need to
do?

Length of string (chars, bytes)
Search for char in string
Search for substring in string
Move cursor within string (by char):

First, Last
Next, Prev

Truncate at a certain byte position

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Software for multi-language Software for multi-language
character sets - 3character sets - 3

Tasks, continued:
Test type of char (digit, alpha, upper,
lower, accented, not accented...)
Modify casing (upper, lower)
Modify accenting (with, without)
Sort (compare 2 strings lexically)
Translate to/from native character set

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

A Word on SortingA Word on Sorting
All lexical sorting requires is the ability to
compare any 2 characters and say one is < the
other
BUT: it's a complex topic
Easy sorting simply compares raw code point
values

'A' < 'a'
'a' < 'b'
'1' < '9'

But where are numbers relative to letters?
In Ascii, all digits are < all letters
But not universally true!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Sorting - 2Sorting - 2

Need to handle comparison of characters using
more than one byte
Need to handle composed characters, too
Real-world products need to offer multiple
compare/sort options:

Case sensitive/insensitive
Accent sensitive/insensitive
Width sensitive/insensitive (for Asian double-wide
characters)
Number first/numbers last

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Software for multi-language Software for multi-language
character sets - 4character sets - 4

Topics:
Unicode and Java
MLCS and Fonts: Rendering text
LMBCS and Unicode in Notes

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Unicode and JavaUnicode and Java

Java is all Unicode internally
Generally UTF-16 encoding
"char" is a 16-bit quantity in most
cases

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Editing Java CodeEditing Java Code

Be careful using non-Ascii characters as literals
in Java code

'a' is fine
Special characters ('\t', '\n') are ok
'KK' (some Kanji character) is dangerous

This is editor-dependent
If your text editor supports Unicode, then it's ok
Otherwise, your code may not be compiled on all
systems

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Editing Java Code - 2Editing Java Code - 2

Not an issue for Java code entered
directly in Domino Designer

It's a LMBCS editor
Source code is stored in UTF-16

This is not an issue for LotusScript or
@Function code

Because you are always using a LMBCS
editor

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Unicode and Java - 2Unicode and Java - 2
Java lets you specify the code point
value for a single char:

'\uXXXX'
Must supply 4 digits, implying UTF-16

byte is an 8-bit quantity in Java
Be careful! Smaller than a char!

int is a 32-bit quantity in Java
So cannot always freely convert
c = (char) i; works most of the time
i = (int) c; always works

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Unicode and Java - 3Unicode and Java - 3

Character manipulation is built-in to
String/StringBuffer classes

char c = string.charAt(i)
toUpper/LowerCase()
toCharArray()
search, replace, etc., etc.
append()

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java Type ConversionJava Type Conversion

Java will convert between String and char[]
transparently
Java will convert between String and byte[] with
a specified encoding

byte[] arrOfBytes = null;
String st = "Some string";
arrOfBytes = st.getBytes("UTF-8");

String st2 = new String(arrOfBytes, "UTF-8");

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java Type Conversion - 2Java Type Conversion - 2

Java will convert between String and char[]
transparently
Java will convert between String and byte[] with
a specified encoding

byte[] arrOfBytes = null;
String st = "Some string";
arrOfBytes = st.getBytes("UTF-8");

String st2 = new String(arrOfBytes, "UTF-8");

NOTE: length of
st2 (chars) may
not = length of

arr (bytes)!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java Type Conversion - 3Java Type Conversion - 3

Useful for converting byte-oriented
strings (e.g., from C programs) to "real"
ML strings
Example: Notes converts all strings to
UTF-8 when passing them to Java

But what if it's Kanji?

String utf8 = document.getItemValueString("abc");
byte[] bytes = utf8.getBytes("UTF-16");
String kanji = new String(bytes, "UTF-16");

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java Supports LocalizationJava Supports Localization

java.util.Locale
Represents:

A "language code", e.g., "en", "de"
ISO 639

A "country code", e.g., "US", "CA"
ISO 3166

(Optional) A "variant", e.g., "posix",
"MAC"

vendor specific

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Localization - 2Localization - 2

A Locale instance implies something
about the usage/formatting of:

dates (9/10/01 vs. 10/09/01 vs. 10.09.01)
currency symbols
accented characters

So, these are all different:
en/US, en/UK, en/IR
fr/CA, fr/FR, fr/BE

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Localization - 3Localization - 3

But: Locale is independent of display
(font)
Can query Java for the current,
"default" locale

Dependent on system configuration
Locale instances can be used to auto-
format strings for display

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java, LotusScript for File I/OJava, LotusScript for File I/O

If the file system is Unicode (e.g.,
Windows NT), then there are no issues
Otherwise, you have 2 choices:

Write binary data in Unicode format
Not readable by other system tools

Convert going in and out
LotusScript does Choice 2
automatically

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java and File I/OJava and File I/O

With Java, you can control how you do it
Package java.io.*

Base layer consists of InputStream and
OutputStream
Byte oriented, you figure it out
Other layers support richer data types

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

FileInputStream fis = new FileInputStream("d:\temp\abc.txt");
char c; int i;
while ((i = fis.read()) >= 0)
{
 c = (char) i;
 // etc....
}
fis.close();

Java and File I/OJava and File I/O

What's wrong with this code?
Works, sometimes...

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java and File I/OJava and File I/O

It works when:
File contents are Ascii
File contents are Unicode

Otherwise, you can't assume that raw
bytes are cast-able to Unicode

Correctly, that is
You are likely to get garbage

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

For "native" file i/o, use Reader/Writer
classes

char oriented, not byte oriented

Java and File I/OJava and File I/O

FileReader fr = new FileReader("d:\temp\abc.txt");
char c; int i;
while ((i = fis.read()) >= 0)
{
 c = (char) i;
 // etc....
}
fr.close();

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

MLCS and Fonts: Rendering TextMLCS and Fonts: Rendering Text

Rendering means:
Displaying a stream of code point values on a
screen, or on paper

Requires mapping a code point value to a
particular glyph

Or a sequence of code point values to a single
glyph

Requires a displayable glyph for the code point
value

With attributes too (bold, italic, superscript, etc.)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Rendering - 2Rendering - 2
A "Font" (in computer terms) is a set of
glyphs

Generally a table of displayable glyphs
Upper and lower case letters, digits, etc.
Kanji characters

Can have multiple Fonts for any
language character set

Just a different way of rendering each
glyph
Times New Roman vs. Helvetica

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Rendering - 3Rendering - 3

Not all fonts have glyphs for the entire
Unicode space

Most don't
"Missing" glyphs default to a "fallback"
character

The character data is still all there!
It's only the rendering software that can't
handle the "missing" glyph

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Rendering - 4Rendering - 4

The character set that a font maps to is vendor-
dependent
Some are Ascii only
Some are Asian only

Though most Asian fonts also include Ascii
Others handle (some subset of) Unicode
Rendering software is responsible for
directionality

BIDI
Top-down

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Rendering - 5Rendering - 5
The amount of space a given string
uses on the screen (or on paper)
depends on:

Font characteristics (monospaced,
proportional)
Attributes (bold, plain)
Point size (10, 12, 48...)
Pixel resolution of the display (DPI)
Actual chars used (esp. if proportional)

Can be very complex to compute!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Java & LMBCS in NotesJava & LMBCS in Notes

All system display software requires "native"
character set
All Lotus product code bases use LMBCS as
the character set

Internal manipulation (sorting, searching, etc.)
Persistent storage (on disk)

With one exception:
LotusScript stores all strings as Unicode (UTF-16)
Must convert between:

LMBCS (for Notes)
Native (for display)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Calling External Code From Java Calling External Code From Java
& LotusScript& LotusScript

LotusScript calls externally using
"Declare" statements

Describes library where code resides,
name of entry point, and arguments
For String types, can declare the arg as:

"ByVal stringarg As LMBCS String"
Does conversion automatically
MUST be "ByVal"

Otherwise, String is Unicode

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Calling External Code From Java Calling External Code From Java
& LotusScript - 2& LotusScript - 2

In Java, you can't invoke C entry points directly
Must use Java Native Interface (JNI)
C entry point receives a pointer to a Java services
vector, plus arguments

Args are scalars or Java object handles
You use the JVM services vector to manipulate
the arguments

E.g., convert String objects to UTF-8 string buffers

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

UI Support for Composed UI Support for Composed
CharactersCharacters

In the Notes Client you can use Alt-F1
to compose chars

Alt-F1 + a + ` = à
Alt-F1 + c + , = ç
and so on

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Notes - 2Notes - 2

Most conversions are transparent to
the LS developer

Java Strings converted to Notes LMBCS
Notes LMBCS strings converted to
Unicode (UTF-8)
LS strings converted to Notes LMBCS
Notes LMBCS converted to Unicode
(UTF-16)

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Notes - 3Notes - 3
When using Notes C API from
LotusScript, need to worry about string
type

Declare (...., st byval As LMBCS
string)
Converts automatically to LMBCS

When using custom C DLLs called from
LotusScript

Either do same Declare trick
Or receive strings as UTF-16 Unicode

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Notes - 4Notes - 4

For Java, when calling C:
String objects received as object handles
Use Java Native Interface (JNI) services
to extract string value the way you want it

UTF-8, UTF-16
Notes has many entry points in the C
API for dealing with multi-language
strings

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Multi-language APIsMulti-language APIs

Categories:
Translation (OSTranslate,
NLS_Translate)
Parsing, searching (NLS_XXX)

All calls are documented in the Notes C
API toolkit
NOTE: All "char *" decls in the C API
mean "unsigned char"

LMBCS

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

OSTranslateOSTranslate

WORD LNPUBLIC OSTranslate(
WORD TranslateMode,
char far *In,
WORD InLength,
char far *Out,
WORD OutLength);

The key is the "TranslateMode" options
Note: result-length may vary from input-length!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

OSTranslate - 2OSTranslate - 2

Assumes that either source or
destination string (or both) is LMBCS
Group 1

Notes assumes Group 1 strings are
optimized

Leading group indicator-bytes
compressed out

All others non-optimized

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

OSTranslate - 3OSTranslate - 3
OS_TRANSLATE_NATIVE_TO_LMBCS - Convert input string from machine's native character set to LMBCS

OS_TRANSLATE_LMBCS_TO_NATIVE - Convert input string from LMBCS to machine's native character set.

OS_TRANSLATE_LOWER_TO_UPPER - Current international case table.

OS_TRANSLATE_UPPER_TO_LOWER - Current international case table.

OS_TRANSLATE_UNACCENT - International unaccenting table. NO REVERSAL!!

OS_TRANSLATE_OSNATIVE_TO_LMBCS - Same as NATIVE (not documented!)

OS_TRANSLATE_LMBCS_TO_OSNATIVE - Same as TO_NATIVE (not documented!)

OS_TRANSLATE_LMBCS_TO_ASCII - Convert the input string from LMBCS to character text.

OS_TRANSLATE_LMBCS_TO_UNICODE - Convert the input string from LMBCS to UNICODE.

OS_TRANSLATE_LMBCS_TO_UTF8 - Convert the input string from LMBCS to UTF8.

OS_TRANSLATE_UNICODE_TO_LMBCS - Convert the input string from UNICODE to LMBCS.

OS_TRANSLATE_UTF8_TO_LMBCS - Convert the input string from UTF8 to LMBCS.

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

OSTranslate - 4OSTranslate - 4

Note that multiple translations are
"lossless"

If you go one way, then come back, all
data is preserved

EXCEPT:
Accented to unaccented
LMBCS to Ascii (maybe)

Complicates display input and editing

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

National Language System (NLS) National Language System (NLS)
APIsAPIs

Supports low-level character based
parsing, searching and translation
Any character set, not just LMBCS/1 or
current native

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

NLS_PINFONLS_PINFO

Use NLS_load_charset to read a
charset descriptor table from disk
Returns a NLS_PINFO *

Opaque data structure, but you will need
it

List of character set IDs found in NLS.H
Used in NLS_translate

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

More functionality than in OSTranslate
Arbitrary translation to/from any character
set
NLS_translate

NLS_STATUS LNPUBLIC NLS_translate(
BYTE far *pString,
WORD Len,
BYTE far *pStringTarget,
WORD far *pSize,
WORD ControlFlags,
NLS_PINFO pInfo);

NLS-translateNLS-translate

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

NLS Translation OptionsNLS Translation Options

NLS_NONULLTERMINATE - Does not add a NULL to the end of the translated result.

NLS_NULLTERMINATE - Adds a NULL to the end of the translated result.

NLS_STRIPUNKNOWN - Strips unknown characters.

NLS_TARGETISLMBCS - Converts target string to LMBCS.

NLS_SOURCEISLMBCS - Converts source string from LMBCS.

NLS_TARGETISUNICODE - Converts target string to UNICODE.

NLS_SOURCEISUNICODE - Converts source string from UNICODE.

NLS_TARGETISPLATFORM - Converts target string to the encoding used by the host OS.

NLS_SOURCEISPLATFORM - Converts source string from the encoding used by the host OS.

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Other NLS API CallsOther NLS API Calls

NLS_string_chars
Number of chars in a string

NLS_string_bytes
Number of bytes in a string (same as
strlen)

Test a character for type:
isdigit, isupper, islower, isspace, ispunct,
iscntrl, isalnum, isalpha, isarith,

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Other NLS API Calls - 2Other NLS API Calls - 2

isleadbyte
If True, then the next 1 (or 2, or 3) bytes
are part of the same character

Enumerate through a string
NLS_get

Parse strings
goto_next_break
goto_next/prev_word_end/start

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Other NLS API Calls - 3Other NLS API Calls - 3

Search
find, find_substr

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

String TruncationString Truncation

String truncation: don't ignore this!
Failure to do this properly can cause
crashes

Situation:
You have an N-byte long MLCS string
You must truncate to M bytes

M < N
For display, to fit in a fixed buffer,
whatever

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

String Truncation - 2String Truncation - 2

Can't just chop it off at M bytes!
Might be the middle of a multi-byte sequence
Will result (at least) in garbage on the display

Correct technique:
Get pointer to max slot in string
Call NLS_goto_prev

Pass in ** for current position, * for start of string
Moves your pointer to the start of the previous char
Can truncate there, or at start of next char

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

MLCS APIs - SummaryMLCS APIs - Summary

All the old C techniques are now useless
Worse: wrong!

You will need to accustom yourself to a new set
of assumptions and functions
But once you get comfortable with it, it's not
difficult

Make it habitual!
NLS calls somewhat limited:

Only a few of the string-compare and search
equivalents for MLCS are exposed!
Testers for full/half pitch not exposed!

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Web applications and MLCSWeb applications and MLCS

What happens Notes data served to
the Web?
HTTP allows specification of the page
charset

Client can specify desired charsets on
request
Server specifies charset on result page

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Web Applications - 2Web Applications - 2

Notes defaults to ISO Latin-1 for output
Automatically converts from LMBCS

But, how do you know what the Client's
real charset is?

Look at requested charsets
Look at country/language code

Can you tell Domino what charset to
use on output?

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Web Applications - 3Web Applications - 3

Yes!
Domino examines Web agent output for
HTTP headers

Must occur BEFORE any data
Domino will notice them and pass them
through
If you specify a Content-Type header,
Domino will try to translate

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Just print out the header (in the correct
format) as the first thing:

print "Content-Type: text/html; charset=ISO-8859-4
print "" ' null to force a newline: REQUIRED
print "Yo, world!"

Web Applications - 4Web Applications - 4

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Web Applications - 5Web Applications - 5

Unfortunately, only works from agents
No way (that I know of) to build this into
a form or page

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Web applications and MLCSWeb applications and MLCS
Another trick for using in browsers
HTTP specifies that Unicode values can be
substituted for any char

'Space' == U+0020
Can encode for HTTP as

%0020
Or %20

So you can encode arbitrary Unicode chars in
your Notes form or page!

The browser will interpret it correctly
Very useful when encoding pass-thru URLs

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

SummarySummary

If everyone spoke (and wrote!) only one
language, it would be easy
Remember: character set encodings
are independent of rendering

Though typographical legacies
complicate encodings (e.g., ligatures)

Unicode is an important technological
advance

Everything defined in a single "space"

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Summary - 2Summary - 2

But the tools are not yet sophisticated
enough

Developers still need some knowledge of
how character sets work
And Unicode implementations are not
always uniform

UTF-8? 16? 32?
Java UTF-16 still has multi-char code
points

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Summary - 3Summary - 3

It will keep getting better
A good thing

It will keep changing
Not always so good

Copyright 2001, Looseleaf Software, Inc.
All rights reserved

Click here to type page titleClick here to type page title

Q & A

	Page 1
	Page 2
	Page 26
	Page 10
	Page 27
	Page 11
	Page 28
	Page 77
	Page 12
	Page 52
	Page 3
	Page 29
	Page 13
	Page 14
	Page 30
	Page 15
	Page 31
	Page 16
	Page 4
	Page 32
	Page 17
	Page 18
	Page 19
	Page 33
	Page 20
	Page 21
	Page 34
	Page 5
	Page 35
	Page 22
	Page 36
	Page 23
	Page 24
	Page 25
	Page 37
	Page 38
	Page 41
	Page 42
	Page 39
	Page 43
	Page 44
	Page 40
	Page 45
	Page 46
	Page 47
	Page 48
	Page 6
	Page 49
	Page 50
	Page 51
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 62
	Page 7
	Page 64
	Page 65
	Page 73
	Page 74
	Page 60
	Page 61
	Page 106
	Page 107
	Page 63
	Page 66
	Page 67
	Page 68
	Page 69
	Page 79
	Page 80
	Page 81
	Page 108
	Page 109
	Page 111
	Page 112
	Page 110
	Page 71
	Page 72
	Page 75
	Page 76
	Page 78
	Page 70
	Page 113
	Page 114
	Page 105
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 93
	Page 91
	Page 90
	Page 89
	Page 92
	Page 94
	Page 95
	Page 99
	Page 96
	Page 97
	Page 98
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 8
	Page 115
	Page 116
	Page 117
	Page 9

